Популярные ответы

Похожие ответы

Треугольник — это многоугольник с тремя сторонами (или тремя углами). Стороны треугольника часто обозначаются маленькими буквами, которые соответствуют заглавным буквам, обозначающим противоположные вершины.

Тупоугольным треугольником называется треугольник, у которого один из углов тупой.

Прямоугольным треугольником называется треугольник, у которого один из углов прямой, то есть равен 90°; стороны a, b, образующие прямой угол, называются катетами ; сторона c, противоположная прямому углу, называется гипотенузой .

Равнобедренным треугольником называется треугольник, у которого две его стороны равны (a = c); эти равные стороны называются боковыми. третья сторона называется основанием треугольника .

Равносторонним треугольником называется треугольник, у которого все его стороны равны (a = b = c). Если в треугольнике не равна ни одна из его сторон (abc), то это неравносторонний треугольник .

Основные свойства треугольников

В любом треугольнике:

  1. Против большей стороны лежит больший угол, и наоборот.
  2. Против равных сторон лежат равные углы, и наоборот. В частности, все углы в равностороннем треугольнике равны.
  3. Сумма углов треугольника равна 180°.
  4. Продолжая одну из сторон треугольника, получаем внешний угол. Внешний угол треугольника равен сумме внутренних углов, не смежных с ним.
  5. Любая сторона треугольника меньше суммы двух других сторон и больше их разности (a < b + c, a > b — c; b < a + c, b > a — c; c < a + b, c > a ? b).

Признаки равенства треугольников

Треугольники равны, если у них соответственно равны:

  1. две стороны и угол между ними;
  2. два угла и прилегающая к ним сторона;
  3. три стороны.

Признаки равенства прямоугольных треугольников

Два прямоугольных треугольника равны, если выполняется одно из следующих условий:

  1. равны их катеты;
  2. катет и гипотенуза одного треугольника равны катету и гипотенузе другого;
  3. гипотенуза и острый угол одного треугольника равны гипотенузе и острому углу другого;
  4. катет и прилежащий острый угол одного треугольника равны катету и прилежащему острому углу другого;
  5. катет и противолежащий острый угол одного треугольника равны катету и противолежащему острому углу другого.

Высота треугольника — это перпендикуляр, опущенный из любой вершины на противоположную сторону (или её продолжение). Эта сторона называется основанием треугольника. Три высоты треугольника всегда пересекаются в одной точке, называемой ортоцентром треугольника .

Ортоцентр остроугольного треугольника расположен внутри треугольника, а ортоцентр тупоугольного треугольника — снаружи; ортоцентр прямоугольного треугольника совпадает с вершиной прямого угла.

Медиана — это отрезок, соединяющий любую вершину треугольника с серединой противоположной стороны. Три медианы треугольника пересекаются в одной точке, всегда лежащей внутри треугольника и являющейся его центром тяжести. Эта точка делит каждую медиану в отношении 2:1, считая от вершины.

Биссектриса — это отрезок биссектрисы угла от вершины до точки пересечения с противоположной стороной. Три биссектрисы треугольника пересекаются в одной точке, всегда лежащей внутри треугольника и являющейся центром вписанного круга. Биссектриса делит противоположную сторону на части, пропорциональные прилегающим сторонам.

Срединный перпендикуляр — это перпендикуляр, проведенный из средней точки отрезка (стороны). Три срединных перпендикуляра треугольника пересекаются в одной точке, являющейся центром описанного круга.

В остроугольном треугольнике эта точка лежит внутри треугольника, в тупоугольном — снаружи, в прямоугольном — в середине гипотенузы. Ортоцентр, центр тяжести, центр описанного и центр вписанного круга совпадают только в равностороннем треугольнике.

Теорема Пифагора

В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

Рекомендуем ознакомится: http://www.genon.ru